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Abstract  22 

Currently solving the severe particle pollution in autumn and winter is the key to 23 

further improve the air quality of China. The source contributions and transboundary 24 

transport of fine particles (PM2.5) in pollution episodes are closely related to large-scale 25 

or synoptic-scale atmospheric circulation. Under different synoptic conditions, how to 26 

effectively reduce emissions to control haze pollution is rarely reported. In this study, 27 

we classify the synoptic conditions over Central China from 2013 to 2018 by using 28 

Lamb-Jenkension method and the NCEP/NCAR FNL operational global analysis data. 29 
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The effectiveness of emission control to reduce PM2.5 pollution during winter haze 30 

episodes under potential synoptic controls is simulated by GEOS-Chem model. Among 31 

the ten identified synoptic patterns, four types account for 87% of the total pollution 32 

days. Two typical synoptic modes of them are characterized by small surface wind 33 

speed and stable weather conditions/high relative humidity (A/C-type) over Central 34 

China due to a high-pressure system/a southwest trough low-pressure system, blocking 35 

pollutants dispersion. Sensitivity simulations show that these two heavy pollution 36 

processes are mainly contributed by local emission sources with ~82% for A-type and 37 

~85% for C-type, respectively. The other two patterns lead to pollution of transportation 38 

characteristics affected by northerly/southerly winds (NW/SW-type), carrying air 39 

pollution from northern/southern China to Central China. The contribution of pollution 40 

transportation from North/South China is 36.9%/7.6% of PM2.5 and local emission 41 

sources contribute 41%/69%. We also estimate the effectiveness of emission reduction 42 

in these four typical severe pollution synoptic processes. By only reducing SO2 and 43 

NOx emission and not controlling NH3, the enhanced nitrate counteracts the effect of 44 

sulfate reduction on PM2.5 mitigations with less than 4% decrease in PM2.5. In addition, 45 

to effectively mitigate haze pollution in NW/SW-type synoptic controlled episodes, 46 

local emission control actions should be in coordination with regional collaborative 47 

actions.  48 

  49 

1 Introduction  50 

The regional pollution of fine particles (PM2.5) has attracted worldwide attention 51 

in the public and in the scientific community (Cheng et al., 2016; Li et al., 2017c; Lin 52 

et al., 2018; Bi et al., 2019) due to its detrimental effect on visibility (Wang et al., 2020) 53 

and public health (Agarwal et al., 2017; Zhang et al., 2017). The PM2.5 pollution in 54 

China has been continuously alleviating since 2013 as the implication of the Air 55 

Pollution Prevention and Control Action Plan (Zheng et al., 2018; Zhang et al., 2019), 56 

especially in the Beijing-Tianjin-Hebei region (BTH) (Li et al., 2017b; Cheng et al., 57 
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2019), the Yangtze River Delta (YRD) region and the Pearl River Delta (PRD) region. 58 

However, severe particle pollution still occurs frequently in autumn and winter, which 59 

is the major reason restricting the PM2.5 to come up to national standard. For example, 60 

12 extremely severe and persistent PM2.5 pollution episodes occurred in Beijing in 61 

January 2013, February 2014, December 2015, December 2016 and January 2017 62 

(Zhong et al., 2018; Sun et al., 2016; Wang et al., 2018). Currently, how to effectively 63 

reduce emissions in autumn and winter is the key to mitigate haze pollution in China. 64 

The contribution of emission sources has been widely recognized as the decisive 65 

factor of PM2.5 pollution over urban agglomerations, including industrial exhaust, urban 66 

transportation, residential emission, power plants, agricultural activities, and bio-67 

combustion (Huang et al., 2014; Tian et al., 2016; Wu et al., 2018; An et al., 2019). 68 

While the outbreak, persistence and dissipation of particle pollution generally depends 69 

on the meteorological conditions and regional synoptic patterns, controlled by the large-70 

scale or synoptic-scale atmospheric circulation (Chuang et al., 2008; Zhang et al., 2012; 71 

Russo et al., 2014; Zheng et al., 2015; Shu et al., 2017; Li et al., 2019). 72 

Many studies have tried to reveal the relationship between synoptic patterns and 73 

severe particle pollution, and estimate the meteorological contributions to these 74 

pollution episodes. The YRD is mainly affected by pollutants transmitted from the 75 

northern and the southern China when the East Asian major trough is located at its front 76 

(Liao et al., 2017; Shu et al., 2017; Li et al., 2019). Liao et al. (2020) has confirmed that 77 

the relative position of the PRD to high-pressure systems imposed significant impacts 78 

on the diffusion conditions and the PM2.5 distributions in the PRD region. For North 79 

China Plain (NCP), high frequency of stagnant weather accompanied by small pressure 80 

gradient and near-surface wind speed, and shallow mixing layer is a major reason of 81 

aerosol pollution over this region in winter (He et al., 2018). The aerosol pollution 82 

formation process in Sichuan Basin is often controlled by the large scale high-pressure 83 

circulation at sea level (Sun et al., 2020). In the Guanzhong basin, pollution event is 84 

generally governed by both the large-scale synoptic situation and the small-scale local 85 
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circulation. The downhill wind not only forms a convergence zone in the basin, but also 86 

makes pollutants flow back from the mountain region to the basin (Bei et al., 2017). 87 

Leung et al. (2018) also find strong correlations of daily PM2.5 variability with several 88 

synoptic patterns, including monsoon flows and cold front channels in northern China 89 

related to the Siberian High, onshore flows in eastern China, and frontal rainstorms in 90 

southern China. These previous studies have highlighted that different levels of PM2.5 91 

pollution are closely related to the dominant synoptic patterns in different regions, and 92 

they attribute the large spatial variability of pollution to the regional transport 93 

contributions, not only the different local sources of PM2.5. However, under different 94 

synoptic conditions, how to effectively reduce local and regional emissions to control 95 

haze pollution is rarely reported. 96 

Various key regions have issued the emergency preplan against the winter haze 97 

episodes, while these schemes can only be targeted at a certain city (The People’s 98 

Government of Beijing Municipality, 2018; The People’s Government of Shanghai 99 

Municipality, 2018) or a certain urban agglomeration (The People's Government of 100 

Guangdong Province, 2014). They always have no binding forces on the larger scale 101 

emission reduction outside of a specific region, which is not conducive to effective 102 

PM2.5 mitigations. Moreover, current emission reduction policies in China mainly 103 

aimed at sulfur dioxide (SO2) and nitrogen dioxide (NO2), ignoring the effective 104 

emission reduction on ammonia (NH3). Compared to remarkable reduction in SO2, 105 

NO2, and primary PM emissions, NH3 emissions has remained stable during 2014–2018 106 

in China (Zheng et al., 2018). Given the important role of NH3 in secondary inorganic 107 

aerosol formation (Geng et al., 2019; Liu et al., 2019), cutting NH3 emissions should 108 

be proposed as a next-step mitigation strategy. Therefore, for PM2.5 mitigations during 109 

winter haze episodes in a specific region forced by potential synoptic controls, whether 110 

the air pollution emergency management and control schemes are effective and how to 111 

improve them has become an urgent scientific question to be answered. 112 
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In order to investigate the effectiveness of emission control to reduce PM2.5 113 

pollution during winter haze episodes under various potential synoptic controls, we take 114 

the severe particle pollution of winter haze episodes over Jingzhou, the hinterland of 115 

Yangtze River middle basin in Central China, as an example. Jingzhou is 116 

geographically surrounded by major haze pollution regions, the SCB to the west, the 117 

PRD to the south, the YRD to the east, and the NCP to the north (Fig. 1). As a regional 118 

pollutant transport hub with sub basin topography, Central China is a region of 119 

transportation-pollution characteristics affected by two reported transport pathways 120 

from the vast flatland in central eastern China (Yu et al., 2020) and from the NCP region 121 

(Zheng et al., 2019a). In combination with high anthropogenic emissions (Wu et al., 122 

2018) and secondary aerosol formation (Huang et al., 2020), Central China often suffers 123 

severe pollution episodes in winter caused by PM2.5 (Gong et al., 2015; Xu et al., 2017). 124 

In this study, we conduct the circulation classification to differentiate the synoptic 125 

modes during the severe particle pollution episodes in winter over Central China from 126 

2013 to 2018 by using Lamb-Jenkension method. Then we simulate the PM2.5 chemical 127 

components, and the contributions of local sources as well as transboundary transport 128 

of PM2.5 under different synoptic conditions. Finally, the effectiveness of emission 129 

reduction in main potential synoptic patterns are evaluated by GEOS-Chem model 130 

simulations. This study could provide reference for emission control of severe winter 131 

haze pollution under different weather types, and provide basis for regional air quality 132 

policy-making. 133 

 134 

2 Data and Methods 135 

2.1 Data 136 

Hourly mass concentrations of PM2.5 at Jingzhou (112.18°E, 30.33°N, 33.7 m) 137 

from November 2013 to December 2018 are obtained from Hubei Environmental 138 

Monitoring Central Station (http://sthjt.hubei.gov.cn/). We screen the pollution days 139 
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with daily mean PM2.5 concentrations larger than 150 µg/m3 for circulation 140 

classification.  141 

 142 

Figure 1 143 

 144 

The meteorological data of surface observations at Jingzhou, including ambient 145 

temperature, relative humidity, wind speed, wind direction and atmospheric pressure, 146 

are obtained from Hubei Meteorological Information and Technology Support Center 147 

(http://hb.cma.gov.cn/qxfw/index.html). The data used in this study are from November 148 

2013 to February 2014, in which four severe particle pollution events occurred in 149 

succession over Central China (Fig. S1).  150 

We use the daily mean sea level pressures (SLP) from the National Centers for 151 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 152 

Final (FNL) Operational Global Analysis data (horizontal resolution: 1° × 1°; temporal 153 

resolution: 6 hours; https://rda.ucar.edu/datasets/ds083.3/) to conduct the classification 154 

of Lamb-Jenkension circulation types. 155 

2.2 Lamb-Jenkension Circulation Classification 156 

The atmospheric circulation classification adopts the Lamb-Jenkension method 157 

proposed by Lamb et al. (1950) and developed by Jenkension et al. (1977). This method 158 

is a combination of subjective and objective methods, overcoming the weaknesses of 159 

their respective (Trigo and DaCamara, 2000) and leading to better synoptic significance 160 

(Pope et al., 2015).  161 

To calculate the circulation types of Jingzhou, we mark total 16 points (97.5°E-162 

127.5°E, 20°N-40°N) by every 10 longitudes and 5 latitudes and the center point 163 

located at 112.5° E and 30° N (Fig. S2). Using the sea level pressure of 16 points, we 164 

calculate six circulation indexes by scheme of central difference: 165 

u = 0.5[𝑃(12) + 𝑃(13) − 𝑃(4) − 𝑃(5)]                                                                   166 

(1) 167 
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Where )163 ,2 ,1=)(( !nnP  is the sea level pressure at the nth point; 178 

21  and  , ααα are the latitude values of points 21 A and A,C , respectively; V is the 179 

geostrophic wind, u  and v  are the latitudinal and meridional components of the 180 

geostrophic wind; ξ  is the geostrophic vorticity; uξ  is the u  meridional gradient, 181 

and vξ  is the v  latitudinal gradient.  182 

Taking the latitude of the center point as the reference frame, the unit of six 183 

circulation indexes is )10/( lonhPa o , the direction of geostrophic wind can be 184 

determined by u  and v , and cyclones and anticyclones can be determined by ξ . 185 

According to the geostrophic wind speed, wind direction and vorticity value, the 186 

circulation is divided into 10 types. The classification standard and corresponding types 187 

are shown in Table 1. 188 

 189 

Table 1 190 
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 191 

2.3 GEOS-Chem simulations 192 

The GEOS-Chem chemistry transport model is used 193 

(http://acmg.seas.harvard.edu/geos/) to simulate the spatiotemporal distribution of 194 

PM2.5. The nested model, covering China (70°E-140°E, 15°S-55°N), is run with a 195 

horizontal resolution of 0.25° latitude × 0.3125° longitude and 72 vertical layers. The 196 

simulations, driven by the GEOS-FP assimilated meteorological data, include detailed 197 

tropospheric Ozone-NOx-VOCs-HOx-aerosol chemistry. More details are shown in 198 

Yan et al. (2019). In the model, anthropogenic and natural sources are fully considered 199 

in GEOS-Chem. Table S1 shows a list of emission inventories in the model. In China, 200 

the monthly grid data of 0.25° × 0.25° from MEIC inventory (http://meicmodel.org) for 201 

CO, NOx, SO2 and non-methane volatile organic compounds (NMVOCs) in 2013-2014 202 

is used. Over Central China, anthropogenic sources of these species are from our group 203 

SEEA (Source Emission and Environment Research) with the grid data of 0.1° × 0.1° 204 

(not shown). The SEEA emission inventory was developed based on the year of 2017 205 

for the Wuhan city cluster and it has been successfully adopted for the air quality 206 

simulating and forecasting of 7th CISM Military World Games in 2019. Other emission 207 

descriptions are shown in Supplementary Sect. S1.  208 

In order to better simulate the spatiotemporal distribution of PM2.5 over Central 209 

China, especially in winter heavy pollution periods, the standard v11-01 of GEOS-210 

Chem is optimized according to the actual situation in China (see details in 211 

Supplementary Sect. S2), including optimizing PM2.5 sources and increasing the 212 

proportion of sulfate primary emission (Yan et al., 2020). The PM2.5 primary 213 

anthropogenic emissions enhance the PM2.5 concentrations over Central China by 5-20 214 

µg/m3 in winter (Fig. S3). Compared with the results before the model optimization 215 

(Fig. S4), the sulfate concentration simulated by the optimized model increased from 216 

10-20 µg/m3 to 30-50 µg/m3. The concentration of PM2.5 increased and improved. 217 

 218 

https://doi.org/10.5194/acp-2020-920
Preprint. Discussion started: 14 November 2020
c© Author(s) 2020. CC BY 4.0 License.



 9 

3. Results and Discussion 219 

3.1 Classification of Potential synoptic controls (PSC) 220 

As shown in Fig. 2, among the circulation patterns of pollution-day at Jingzhou 221 

from 2013 to 2018, the frequency of SW-type circulation is the highest, accounting for 222 

29% of the total pollution days. The frequencies of NW-type, A-type and C-type are 223 

also high, accounting for 27%, 19% and 12%, respectively. While the other six 224 

circulation patterns are less occurred, with the frequencies less than 5%. Thus, the 225 

above four typical circulation types are considered as the main potential synoptic 226 

controls of the severe particle pollution episodes over Central China.  227 

 228 

Figure 2 229 

 230 

3.2 Characteristics of the four main PSC 231 

SW-type circulation mainly occurs in winter (December, January and February). 232 

The circulation at 500 hPa is relatively flat and the whole East Asia region is affected 233 

by the westerly flow (Fig. S5a). Westerly belt fluctuates greatly at 700 hPa and the 234 

middle latitude presents two ridges and a southwest trough in Asia (Fig. S6a). Jingzhou 235 

is located in the front of a trough, prevailing the weak southwest airflow. At 850 hPa, 236 

the cold high pressure center is formed in Xinjiang of China. Warm low pressure 237 

appears in the low latitude area and weak high pressure appears in the East China Sea 238 

(Fig. 3a). In combination with the surface field, a high-low-high saddle like field forms 239 

from west to east (Fig. 4a). Such synoptic type is also the dominant weather system of 240 

eastern China (Shu et al., 2017; Yang et al., 2018). Jingzhou is located in the back of 241 

Bohai-northeast high pressure and the front of southwest warm low pressure, and it is 242 

affected by the southerly airflow, associated with small local surface wind speed (< 3 243 

m/s).  244 

 245 

Figure 3 246 
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 247 

NW-type circulation mainly occurs in the early winter (December and January). 248 

This synoptic pattern is also reported as one of the main types to affect the aerosol 249 

distributions over eastern China (Zheng et al., 2015). Circulation at 500 hPa is 250 

controlled by one trough and one ridge, with the weak ridge located in the northwest of 251 

China and the shallow trough located in the northeast of China (Fig. S5b). The whole 252 

East Asia is affected by the westerly current. The trough and ridge at 700 hPa are 253 

deepened. Affected by the flow around the plateau and the shallow trough in the 254 

northeast, Jingzhou is located at the bottom of the shallow trough, prevailing the west-255 

northwest airflow (Fig. S6b). At 850 hPa, the cold high pressure center is formed in 256 

Xinjiang, and Jingzhou is affected by the northerly airflow, due to being in the front of 257 

the high pressure (Fig. 3b). For the sea level pressure (SLP) field, the cold high pressure 258 

is located in the west of Mongolia and Xinjiang of China (Fig. 4b). Jingzhou is located 259 

at the weak fluctuation in the front of the high pressure, and the surface wind speed is 260 

smaller than 2 m/s.  261 

 262 

Figure 4 263 

 264 

A-type circulation mainly occurs in the early winter. The high-altitude circulation 265 

field is controlled by one trough and one ridge (Fig. S5c and S6c). East Asia is affected 266 

by west-northwest air flow, and the SLP is controlled by a huge high pressure, with the 267 

center located in the southwest of Baikal Lake (Fig. 4c). A surface high favors 268 

accumulation of air pollutants, especially over the regions of high pressure centers 269 

(Leung et al., 2018). Jingzhou is in the sparse pressure field in the front of the high 270 

pressure (Fig. 3c and 4c), with the average wind speed of ~1.3 m/s. The uniform west-271 

northwest air flow at high altitude would lead to the observed lower water vapor content 272 

and less cloud amount, which is conducive to radiation cooling at night. In addition, 273 

due to the weak high pressure ridge in the north, it is not conducive to the eastward and 274 
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southward movement of cold air, leading to the stable weather situation. This type is 275 

also responsible for most of the severe particulate pollution days in the BTH and YRD 276 

regions (Li et al., 2019). 277 

C-type circulation mainly occurs in winter, spring and autumn, when the relative 278 

humidity is large with the average value of 74%. East Asia is controlled by the straight 279 

westerly flow, and the southwest shallow trough is obvious at 500 hPa (Fig. S5d). In 280 

combination with the West Pacific subtropical high extending to the west, Central 281 

China is affected by the southwest flow. Southwest trough is deepened at 700 hPa, and 282 

Jingzhou is located in front of the trough and controlled by the southwest airflow (Fig. 283 

S6d). High pressure in the south of Xinjiang and the north of Plateau is strengthened at 284 

850 hPa, and the southwest low pressure center is formed (Fig. 3d). Jingzhou is located 285 

in the low pressure system on the SLP field (Fig. 4d), with small surface wind speed 286 

(0-3 m/s). The impact of low-pressure systems on winter heavy air pollution have also 287 

been reported in the northwest Sichuan Basin (Ning et al., 2018).  288 

 289 

3.3 PM2.5 and chemical components under the four main PSC in control 290 

simulations  291 

The spatiotemporal distribution of PM2.5 and its components under the four typical 292 

synoptic controls over Central China were simulated by optimized GEOS-Chem model 293 

(Table 2). The continuous time periods covering the synoptic controls of SW-type (18-294 

25 November, 2013), NW-type (19-26 December, 2013), A-type (14-21 January, 2014) 295 

and C-type (26 January - 2 February, 2014) are selected. The air quality at Jingzhou 296 

during the four pollution episodes is between grade 5 (PM2.5 > 150 µg/m3) and grade 6 297 

heavy pollution (PM2.5 > 250 µg/m3, as Fig. 5a and S1a shown). The simulation time is 298 

started at November 1st, 2013, with the first two weeks used as spin up to eliminate the 299 

impact of initial conditions. 300 

 301 

Figure 5 302 
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 303 

The daily/hourly mean PM2.5 concentrations in the four typical heavy pollution 304 

processes simulated by the control (CON) simulation (Table 2) are compared with the 305 

observations (Fig. 5a/Fig. S1a). The model underestimates the observed PM2.5 306 

concentrations (by 43.3 µg/m3 on average), especially in the high PM2.5 periods (by 307 

116.8 µg/m3 at the maximum occurring in November 21-23, 2013). The possible causes 308 

for underestimation are insufficient resolution of the model (Yan et al., 2014), emission 309 

errors (Lin et al., 2016), meteorological field deviations (Liu et al., 2018) and imperfect 310 

chemical mechanisms (Yan et al., 2019). Nevertheless, the model can reproduce the 311 

evolution of each severe particle pollution episode well, including the accumulation of 312 

pollutants, the continuing process and the gradual dissipation of pollution. 313 

 314 

Table 2 315 

 316 

Figure S7/S8 shows the modeled spatial distribution of PM2.5, sulfate, nitrate and 317 

ammonium concentrations for the four typical heavy pollution processes over 318 

Jingzhou/China. The spatial distribution of the three inorganic salts is similar to that of 319 

PM2.5. Over Central China, the main components of PM2.5 are the three inorganic salts 320 

in these pollution episodes, with the averaged contributions of sulfate, nitrate and 321 

ammonium being ~20%, ~18% and ~13%, respectively. Huang et al. (2014) have also 322 

reported that the three secondary inorganic particles rank the highest fraction among 323 

the PM2.5 species in Central-Eastern China. As Table 3 shown, in addition to inorganic 324 

salts, other chemical components include dust (~15%), black carbon (~7%), primary 325 

organic aerosol (~14%) and second organic aerosol (~13%).  326 

 327 

Table 3 328 

 329 

https://doi.org/10.5194/acp-2020-920
Preprint. Discussion started: 14 November 2020
c© Author(s) 2020. CC BY 4.0 License.



 13 

In these four pollution events, the differences in mass percentages of each 330 

chemical component ranged from 0.1% (dust) to 6.2% (sulfate) (Table 3). Spatial 331 

distribution of PM2.5, sulfate, nitrate and ammonium concentrations averaged in the 332 

four typical heavy pollution processes over Jingzhou/China are shown in Fig. S7/S8. 333 

See details in Sect. 3.4 for further analysis of the causes for the differences. 334 

 335 

3.4 Local emissions versus transportation contributions to PM2.5 under the four 336 

main PSC 337 

In order to investigate the effectiveness of emission control to reduce PM2.5 338 

pollution of Central China in the four typical severe particle pollution episodes, firstly 339 

we estimate the local sources versus transportation contributions of PM2.5 by GEOS-340 

Chem sensitivity simulations (Table 2). Results of XJ0 indicates the contribution of 341 

local emission sources to the PM2.5 pollution over Jingzhou. The difference between 342 

CON and XCC0 shows the transportation contribution of PM2.5 outside Central China 343 

to Jingzhou. The difference between CON and NCP0/YRD0/PRD0/SCB0 represents 344 

the contribution of pollution transportation from NCP/YRD/PRD/SCB regions to 345 

Jingzhou.  346 

 347 

Figure 6 348 

 349 

For the SW-type synoptic situation, differences between the simulation results of 350 

NCP0/YRD0/SCB0 and CON show that pollution controlled by SW-type circulation 351 

over Central China is almost not affected by the emission sources from North 352 

China/East China/Sichuan Basin. The concentrations of PM2.5 and three inorganic salts 353 

simulated by NCP0/YRD0/SCB0 are similar to those simulated by CON, with a 354 

difference less than 3.0% (Fig. 7). However, affected by the southerly airflow at 850 355 

hPa (Fig. 6), air pollutants formed over southern China could be transmitted to Central 356 

China, with the transportation contribution of 7.6%. In addition, the contributions from 357 
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transboundary transport from non-Jingzhou Central China is simulated to be 12.0%. 358 

The transportation of air pollutants from the south makes the proportion of the three 359 

inorganic salts (45.7%) in Jingzhou area the smallest among the four pollution episodes 360 

(50.3%-55.5% for other three episodes), because the emissions of SO2, NO2 and NH3 361 

in the south (especially in Guangxi and Guizhou province) are smaller than those in 362 

Central China (Li et al., 2017a). Associated with the small surface wind speed of 2.1 363 

m/s on average (Fig. 5) and the weak ascending in the vertical direction (Fig. 6) at 364 

Jingzhou, it is not conducive to the dispersion of local pollutants (Zheng et al., 2015). 365 

The high PM2.5 concentrations are mainly accumulated by local emissions. The 366 

simulations of XJ0 and CON show that the local emission sources over Jingzhou 367 

contribute ~70% to PM2.5. 368 

 369 

Figure 7 370 

 371 

Figure 8 372 

 373 

For the NW-type synoptic mode, affected by the northerly airflow (Fig. 8), it is 374 

conducive to the southward movement of air pollutants in northern China ( He et al., 375 

2018; Leung et al., 2018). Influenced by the local and surrounding terrain over Central 376 

China (Fig. 1), two transportation channels are formed from north to south and from 377 

northeast to southwest (Fig. 8). In addition, due to the local small wind speed (1.4 m/s 378 

on average) near the ground (Fig. 5), the weak convection and the warm ridge along 379 

the East Asia coast (Fig. 8), the local and transported pollutants accumulate in Central 380 

China. The average concentration of PM2.5 in Jingzhou is 179.4 µg/m3. Due to the 381 

transportation contribution of pollutants from northern China (with much higher 382 

anthropogenic emissions of SO2, NO2 and NH3) (Li et al., 2017a), the total proportion 383 

of the three inorganic salts is the highest (55.5%). The PM2.5 concentration simulated 384 

in NCP0 is 63.1% of that by CON simulation (Fig. 7), indicating that the transportation 385 
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contribution from North China in this heavy pollution episode is as high as 36.9%. The 386 

contribution of local emission sources is much smaller than that of the SW-type 387 

synoptic pattern, only 41.2% (comparison between XJ0 and CON).  388 

 389 

Figure 9 390 

 391 

Under the A-type circulation, Jingzhou is controlled by a high pressure system 392 

(Fig. 9) which can lead to stable weather conditions caused by radiation inversion (Guo 393 

et al., 2015) and subsidence inversion (Kurita et al., 1985), being favorable to 394 

continuous accumulation of local pollutants (Guo et al., 2015). The distribution of PM2.5 395 

in China is similar to that of SW-type weather condition, with an averaged PM2.5 396 

concentration of 128.6 µg/m3 over Central China. Unlike SW-type, the PM2.5 at 397 

Jingzhou in this synoptic pattern is less affected by transboundary transport, with the 398 

total transportation contribution of the surrounding four major pollution regions being 399 

less than 9%. The contribution of local emission sources is about 82% (Fig. 7).  400 

 401 

Figure 10 402 

 403 

Under the C-type synoptic pattern, the southwest low pressure center is formed at 404 

850 hPa, and Jingzhou is located in the low pressure system on the SLP field (Fig. 10). 405 

In combination with the large relative humidity (78% on average; Fig. 5) because that 406 

the occurrence season of C-type is the late winter and early spring, it can promote the 407 

haze pollution owing to its impact on hydrophilic aerosols (Twohy et al., 2009; Zheng 408 

et al., 2015). Together with the small wind speed (less than 4 m/s; Fig. 5), it is easy to 409 

cause the accumulation of pollutants. The average concentration of PM2.5 over Central 410 

China is as high as 203.7 µg/m3. Air pollution controlled by this weather condition is 411 

the most serious of the four typical synoptic controls. However, in this weather situation, 412 

pollutants in North China are easy to diffuse (Miao et al., 2017; Li et al., 2019), and the 413 
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concentration of PM2.5 is significantly lower than that in the former three weather 414 

situations (Fig. 10 and Fig. S8). The contribution of pollution transport from non-415 

Central China region simulated by GEOS-Chem is less than 8%, and the contribution 416 

of local emission sources at Jingzhou is more than 85% (Fig. 7).  417 

 418 

3.5 Effectiveness of emission reduction under the four main PSC 419 

In order to estimate the effectiveness of emission reduction in severe pollution 420 

events forced by the four potential synoptic controls, we conduct sensitivity simulations 421 

by applying seven emission scenarios (Table 2). All emission scenarios use the 422 

reduction ratio of 20% which is close to the average of the target emission reduction of 423 

all provinces in the 13th Five-year plan (The State Council of the People’s Republic of 424 

China, 2016). The differences in model results between CON and JSN/JSNN/JALL 425 

represent the environmental benefits caused by different local emission reduction 426 

scenarios. The potential PM2.5 mitigations by joint prevention and control in different 427 

regions are calculated by sensitivity experiments of CCALL, CNALL, CPALL and 428 

TALL. 429 

In the JSN emission reduction scenario, the sulfate and ammonium concentrations 430 

over Jingzhou are significantly reduced by 3.2-5.8 µg/m3 (12.7-14.5%) and 0.6-1.9 431 

µg/m3 (3.2-5.9%) in these four pollution events, respectively. However, the 432 

concentration of nitrate increases (1.3-1.7%). This is because there is a competition 433 

mechanism between nitrate and sulfate. Ammonium ions always react with sulfate ions 434 

first to generate ammonium sulfate, which will continue to react with nitrate ions to 435 

generate ammonium nitrate when ammonium ions are rich (Mao et al., 2010). The 436 

modeling results indicate that there are enough NH3 emissions over Central China to 437 

consume all sulfate ions, but not enough to combine with all nitrate ions. Thus the 438 

reduction of SO2 emission increases the concentration of nitrate, which offset the 439 

contribution of sulfate particle reduction to the environment to some extent. Therefore, 440 

the application of JSN emission reduction scheme only reduces the PM2.5 441 
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concentrations by 3.1-7.2 µg/m3 (2.0-3.5%, Fig. 11). This inefficient emission reduction 442 

scheme is most widely used in heavy pollution areas over China in the past decade, 443 

ignoring the synergistic effect of various precursors. 444 

 445 

Figure 11 446 

 447 

By applying the JSNN and JALL emission reduction scenarios, we aim to evaluate 448 

the synergistic effect of multiple precursors on emission reduction. These two scenarios 449 

reduce the average sulfate concentration in Jingzhou by 2.8-6.7 µg/m3 (11.3-17.3%) 450 

and 2.9-7.2 µg/m3 (11.7-17.9%), and the ammonium concentration by 2.0-4.8 µg/m3 451 

(12.1-16.5%) and 2.2-4.7 µg/m3 (13.2-17.3%), respectively. Unlike the increments of 452 

nitrate in JSN emission reduction scenario, the nitrate decreases (JSNN: 0.3-1.2 µg/m3; 453 

JALL: 0.4-1.5 µg/m3). Therefore, through the application of JSNN and JALL emission 454 

reduction schemes, PM2.5 concentrations decrease by 4.9-8.3% and 9.0-15.9%, 455 

respectively (Fig. 11), much higher than the improvement by JSN scenario. Zheng et 456 

al. (2019b) has also evaluated the sensitiveness of NH3 control to PM2.5 reduction based 457 

on observations. However, these results indicate that it is unrealistic to substantially 458 

reduce local emissions to achieve the national air quality standard in the long term.  459 

Additionally, the sensitivity simulations by excluding emission sources over 460 

upwind regions are conducted to estimate the potential PM2.5 mitigations of inter-461 

regional and intra-regional joint control. Our results show that after applying TALL 462 

emission reduction scenario, PM2.5 concentrations have been significantly improved, 463 

with the improvement rates increased from 9.0-15.9% (by JALL scenario) to 17.4-18.8% 464 

(Fig. 11). Especially, the NW-type synoptic controlled air pollution episode shows the 465 

best effect of joint prevention, followed by SW-type. For NW-type, by reducing 466 

emissions over Central China and Northern China (CNALL scheme), PM2.5 467 

concentrations are reduced by 26.5 µg/m3 (16.9%), much more effective than JALL 468 

emission reduction scheme (14.1 µg/m3, 9.0%). In SW-type controlled pollution 469 
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episode, it should be otherwise to decrease the emissions over Southern China in 470 

addition to Central China. 471 

 472 

4. Conclusion 473 

The PM2.5 pollution in autumn and winter haze periods is now the key obstacle for 474 

further improving the air quality in China. The extremely severe and persistent PM2.5 475 

pollution episodes are attributed to dominant synoptic conditions in addition to high 476 

precursor emissions. For the PM2.5 mitigations during winter haze episodes in specific 477 

region forced by potential synoptic controls, how to effectively reduce emissions has 478 

become an urgent scientific question to be answered. Our results over Central China 479 

could provide reference for regional air quality policy-making. 480 

Through Lamb-Jenkension circulation classification, the top four potential 481 

synoptic controls (PSC) of heavy PM2.5 pollution days (totally 109 days) over Central 482 

China from 2013 to 2018 are decomposed to be SW-type, NW-type A-type and C-type, 483 

accounting for 29%, 27%, 19% and 12% of the total pollution days, respectively. In 484 

these four PSC, three inorganic salt aerosols (sulfate: ~20%; nitrate: ~18%; ammonium: 485 

~13%) totally accounted for ~51% of PM2.5 concentrations simulated by optimized 486 

GEOS-Chem modelling. The difference of PM2.5 concentrations for the four PSC is 487 

mainly contributed by the differences of the three inorganic salts.  488 

In the SW-type/NW-type synoptic situation, affected by the southerly/northerly 489 

airflow, pollutants over southern/northern China could be transmitted to Central China, 490 

with the transportation contribution of 7.6%/37%. In the situation A-type/C-type 491 

weather, affected by stable weather condition/high relative humidity, the pollution 492 

processes are less affected by the emission sources from non-local regions. And the 493 

local emission sources contribute 82%/85% of PM2.5.  494 

By only reducing SO2 and NOx emission and not controlling NH3, due to the 495 

competition mechanism between nitrate and sulfate, the concentrations of sulfate and 496 

ammonium decrease, but the concentration of nitrate increase instead. The enhanced 497 
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nitrate counteracts the effect of sulfate reduction on PM2.5 mitigation with less than 4% 498 

decrease in PM2.5. Even if the NH3 emission is also reduced, the PM2.5 concentration 499 

reduction is less than 9%. By applying the TALL emission reduction scenario, PM2.5 500 

concentrations would decrease significantly, with the improvement rate increased from 501 

9.0-15.9% (by JALL scenario) to 17.4-18.8%.  502 

These results provide an opportunity to effectively mitigate haze pollution by local 503 

emission control actions in coordination with regional collaborative actions according 504 

to different synoptic patterns. Especially, the NW-type synoptic controlled air pollution 505 

episode shows the best effect of joint prevention, followed by SW-type. It is noted that 506 

in this study, the division of transmission areas is relatively rough, and more accurate 507 

source area identification and refined assessment of emission reduction effect of 508 

multiple pollutants from source groups are needed in the follow-up. 509 
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 791 

 792 

 793 
Figue 1 The location of Jingzhou (red area) and the major haze pollution regions of 794 

NCP, YRD, PRD, and SCB. The areas framed in red are used to investigate the inter-795 

regional imapcts by GEOS-Chem sensitivity simulations. The overlaid map shows the 796 

surface elevation (m) from a 2 min Gridded Global Relief Data (ETOPO2v2) available 797 

at NGDC Marine Trackline Geophysical database 798 

(http://www.ngdc.noaa.gov/mgg/global/etopo2.html). 799 
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 801 

 802 
Figure 2 Frequency distributions of ten circulation types for the heavy pollution days 803 

of 2013-2018 over Jingzhou. The occurrence numbers of each type are shown. The ten 804 

circulation types include Southwest (SW), Northwest (NW), Anticyclone (A), Cyclone 805 

(C), Anticyclone-West (AW), Cyclone-West (CW), Cyclone-Southeast (CSE), 806 

Cyclone-Northwest (CNW), Southeast (SE) and East (E), respectively. 807 
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 809 

 810 
Figure 3 Spatial distribution of 850 hPa geopotential height and wind vector for SW-811 

type (a), NW-type (b), A-type (c) and C-type (d) synoptic control averaged over 2013-812 

2018. The black dot indicates the location of Jingzhou.  813 
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 815 

 816 
Figure 4 Spatial distribution of sea level pressure for SW-type (a), NW-type (b), A-type 817 

(c) and C-type (d) synoptic control averaged over 2013-2018. The black dot indicates 818 

the location of Jingzhou. 819 
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 822 

 823 

Figure 5 (a) Daily mean values of modeled (red line) and observed (black line) PM2.5 824 

concentration (µg/m3) at Jingzhou and four severe pollution events (grey area) from 825 

November, 2013 to February, 2014. (b) Observed daily mean wind speed (red line) and 826 

wind direction (black dots). (c) Obseved temperature (black line), relative humidity (red 827 

line) and sea level pressure (blue line). 828 
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 831 

Figure 6 (a) Spatial distribution of PM2.5, sulfate, nitrate and ammonium concentrations 832 

averaged over SW-type synoptic controls (18-25 November, 2013) simulated by 833 

GEOS-Chem control simulation (µg/m3). (b) Meteorological conditions of SW-type: 834 

sea level pressure (red line) and temperature (colour shades), surface relative humidity 835 

(%) fields, 850 hPa wind and geopotential height (red line) and height–latitude cross-836 

sections of vertical velocity (Pa/s).  837 
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 839 

 840 

Figure 7 Modeled concentrations (µg/m3) of PM2.5 at Jingzhou in the GEOS-Chem 841 

control (red bar) and sensitivity (black bar) simulations in view of the regional 842 

transportation, and the differences (black characters for mass concentrations and blue 843 

characters for mass percentages) between the sensitivity and the control simulations. 844 

The abbreviations of each simulation referred to Table 2. 845 

 846 
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 848 

 849 
Figure 8 As in Fig. 6 but for NW-type synoptic control (19-26 December, 2013). 850 
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 853 

 854 
Figure 9 As in Fig. 6 but for A-type synoptic control (14-21 January, 2014). 855 

 856 
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 858 

 859 
Figure 10 As in Fig. 6 but for C-type synoptic control (26 January - 2 February, 2014). 860 

 861 
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 863 

 864 

Figure 11 Modeled concentrations (µg/m3) of PM2.5 at Jingzhou in the GEOS-Chem 865 

control (red bar) and sensitivity (black bar) simulations for emission reduction, and the 866 

differences (black characters for mass concentrations and blue characters for mass 867 

percentages) between the sensitivity and the control simulations. The abbreviations of 868 

each simulation referred to Table 2. 869 

 870 
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 872 
Table 1 Lamb-Jenkinson circulation types 873 

ξ ≤ 𝑉 

(Flat airflow type) 

ξ ≥ 2𝑉 

(Rotating airflow type) 

𝑉＜ ξ ＜2𝑉 

(Mixed type) 
East (E),  

Southeast (SE),  

Southwest (SW), 

Northwest (NW) 

Anticyclone (A),  

Cyclone (C) 

Cyclone-Southeast (CSE), 

Cyclone-West (CW), 

Cyclone-Northwest (CNW), 

Anticyclone-West (AW) 

 874 
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 876 

Table 2 Description of sensitivity simulations by GEOS-Chem model. The NCP, YRD, 877 

PRD and SCB are the areas framed in red showed by Fig. 1. 878 

Simulations Description  

CON Applying the original emission situation in Table S1 

XJ0 Emissions of all pollution sources1 outside Jingzhou are set to be zero 

XCC0 Emissions of all pollution sources outside Central China are set to be 

zero 

NCP0 Emissions of all pollution sources over NCP region are set to be zero 

YRD0 Emissions of all pollution sources over YRD region are set to be zero 

PRD0 Emissions of all pollution sources over PRD region are set to be zero 

SCB0 Emissions of all pollution sources over SCB region are set to be zero 

JSN Emissions of SO2 and NOx at Jingzhou are reduced by 20% 

JSNN Emissions of SO2, NOx and NH3 at Jingzhou are reduced by 20% 

JALL Emissions of all pollution sources at Jingzhou are reduced by 20% 

CCALL Emissions of all pollution sources over Central China are reduced by 

20% 

CNALL Emissions of all pollution sources over Central China and NCP region 

are reduced by 20% 

CPALL Emissions of all pollution sources over Central China and PRD region 

are reduced by 20% 

TALL Emissions of all pollution sources over Central China, NCP, YRD, 

PRD and SCB region are reduced by 20% 

1. All pollution sources include emissions of SO2, NOx, NH3, CO, BC, OC and NMVOCs. 879 
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 883 

Table 3 Simulated PM2.5 concentrations and associated chemical components averaged 884 

for the four typical heavy pollution episodes at Jingzhou. Also shown in brackets are 885 

the percentages of each component in PM2.5.  886 

PM2.5 components Typical heavy pollution episodes 

µg/m3 11/18-11/25（

SW-type） 

12/19-12/26

（NW-type） 

1/14-1/21（A-

type） 

1/26-2/2（C-

type） 

Nitrate 30.6 (20.0%) 34.6 (22.1%) 23.4 (17.3%) 42.3 (20.7%) 

Sulfate 26.5 (13.4%) 30.7 (19.6%) 27.7 (20.4%) 40.4 (19.7%) 

Ammonium 18.8 (12.3%) 21.6 (13.8%) 17.1 (12.6%) 27.1 (13.2%) 

Dust 24.4 (15.9%) 22.3 (14.2%) 19.8 (14.6%) 29.2 (14.3%) 

BC 10.5 (6.8%) 9.6 (6.1%) 9.5 (7.0%) 13.8 (6.7%) 

POA 21.6 (14.1%) 18.9 (12.1%) 18.9 (13.9%) 27.7 (13.5%) 

SOA 20.9 (13.6%) 19.0 (12.1%) 19.2 (14.2%) 24.1 (11.8%) 

PM2.5 153.3 156.7 135.6 204.6 
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